Regression-aware decompositions

نویسنده

  • Mark Tygert
چکیده

Linear least-squares regression with a “design” matrix A approximates a given matrix B via minimization of the spectralor Frobenius-norm discrepancy ‖AX − B‖ over every conformingly sized matrix X. Another popular approximation is low-rank approximation via principal component analysis (PCA) — which is essentially singular value decomposition (SVD) — or interpolative decomposition (ID). Classically, PCA/SVD and ID operate solely with the matrix B being approximated, not supervised by any auxiliary matrix A. However, linear least-squares regression models can inform the ID, yielding regression-aware ID. As a bonus, this provides an interpretation as regression-aware PCA for a kind of canonical correlation analysis between A and B. The regression-aware decompositions effectively enable supervision to inform classical dimensionality reduction, which classically has been totally unsupervised. The regression-aware decompositions reveal the structure inherent in B that is relevant to regression against A.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tensor Decompositions: A New Concept in Brain Data Analysis?

Matrix factorizations and their extensions to tensor factorizations and decompositions have become prominent techniques for linear and multilinear blind source separation (BSS), especially multiway Independent Component Analysis (ICA), Nonnegative Matrix and Tensor Factorization (NMF/NTF), Smooth Component Analysis (SmoCA) and Sparse Component Analysis (SCA). Moreover, tensor decompositions hav...

متن کامل

Unexplained gaps and Oaxaca–Blinder decompositions

Unexplained Gaps and Oaxaca-Blinder Decompositions We analyze four methods to measure unexplained gaps in mean outcomes: three decompositions based on the seminal work of Oaxaca (1973) and Blinder (1973) and an approach involving a seemingly naïve regression that includes a group indicator variable. Our analysis yields two principal findings. We show that the coefficient on a group indicator va...

متن کامل

Diversity in Classifier Ensembles: Fertile Concept or Dead End?

Diversity is deemed a crucial concept in the field of multiple classifier systems, although no exact definition has been found so far. Existing diversity measures exhibit some issues, both from the theoretical viewpoint, and from the practical viewpoint of ensemble construction. We propose to address some of these issues through the derivation of decompositions of classification error, analogue...

متن کامل

Infinite-dimensional versions of the primary, cyclic and Jordan decompositions

The famous primary and cyclic decomposition theorems along with the tightly related rational and Jordan canonical forms are extended to linear spaces of infinite dimensions with counterexamples showing the scope of extensions.

متن کامل

Dimension reduction in functional regression with applications

Two dimensional reduction regression methods to predict a scalar response from a discretized sample path of a continuous time covariate process are presented. The methods take into account the functional nature of the predictor and are both based on appropriate wavelet decompositions. Using such decompositions, we derive prediction methods that are similar to minimum average variance estimation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1710.04238  شماره 

صفحات  -

تاریخ انتشار 2017